The Topological Data Analysis Pipeline

Elise Askelsen

University of Iowa Department of Mathematics

Central College Heartland Talk November 15, 2023

Table of contents:

- Introduction
- 2 The Pipeline
- Applications
- Future Directions for TDA (and for you!)
- 6 Conclusion

Introduction

Large amounts of data have created a need for new types of analysis, leading to the development of Topological Data Analysis, TDA.

Introduction

Large amounts of data have created a need for new types of analysis, leading to the development of Topological Data Analysis, TDA.

Topological Data Analysis Pipeline:

 $\mathsf{Data} \to \mathsf{Geometry} \to \mathsf{Algebra} \to \mathsf{Summary} \to \mathsf{Analysis}$

Given a set of data, we build a simplicial complex.

Definition

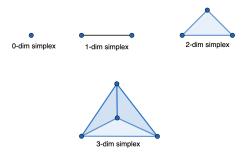
An abstract simplicial complex is a finite collection A of finite non-empty sets such that if $\alpha \in A$, then so is every subset of α .

Given a set of data, we build a simplicial complex.

Definition

An abstract simplicial complex is a finite collection A of finite non-empty sets such that if $\alpha \in A$, then so is every subset of α .

Practically, examples include sets of simplicies include



Given a set of data, we can build a simplicial complex in the following way;

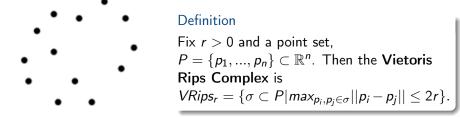


Figure: Sampling of Data

Given a set of data, we can build a simplicial complex in the following way;

Figure: Sampling of Data

Definition

Fix r > 0 and a point set, $P = \{p_1, ..., p_n\} \subset \mathbb{R}^n$. Then the **Vietoris** Rips Complex is $VRips_r = \{\sigma \subset P | max_{p_i, p_i \in \sigma} | |p_i - p_j|| \le 2r\}$.

There are many different types of complexes that are used in TDA.

In building the Vietoris Rips Complex for our data for increasing radii, we obtain a filtered simplicial complex, namely

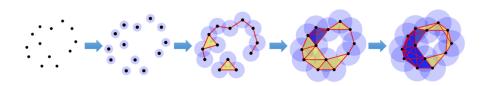


Figure: Building the Vietoris Rips Filtration

Now, to translate from geometry and to algebra, we need to learn a little about homology.

In an intuitive sense...

the k^{th} homology group of a simplicial complex X, $H_k(X)$, describes the number of holes in X with a k-dimensional boundary.

A 0-dimensional boundary hole is simply a gap between two components.

Geometry → Algebra

Often we use the Betti Numbers.

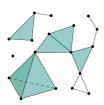
Definition

The k^{th} Betti Number of a topoplogical space, X, is defined as $\beta_k(X) = rank(H_k(X))$.

Often we use the Betti Numbers.

Definition

The k^{th} Betti Number of a topoplogical space, X, is defined as $\beta_k(X) = rank(H_k(X))$.

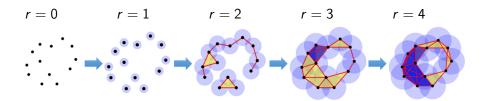


Often we use the Betti Numbers.

Definition

The k^{th} Betti Number of a topoplogical space, X, is defined as $\beta_k(X) = rank(H_k(X)).$



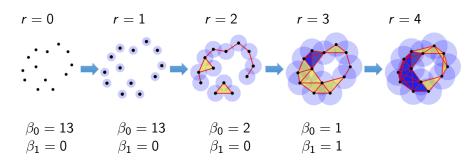


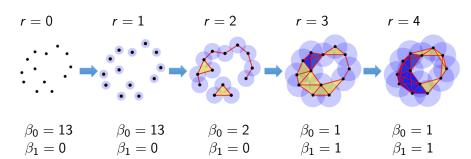
$$r = 0$$
 $r = 1$ $r = 2$ $r = 3$ $r = 4$

$$\vdots$$

$$\beta_0 = 13$$

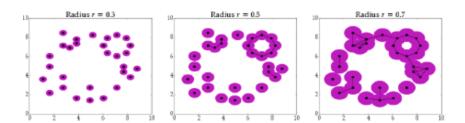
$$\beta_1 = 0$$



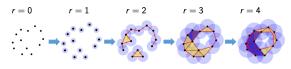


With the persistent homology now computed, we summarize our data in a barcode by tracking how long features persist.

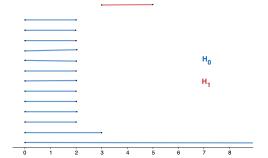
We do this with intervals of the form [birth, death) for each feature.



The barcode for our example is given by the following.

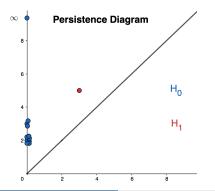


Barcode for Sample Data



We can also summarize our findings in a persistent diagram.





To graph the persistence diagram, we plot information about each feature in the form of points, (birth, death).

Theoretical Diversion: We can view the barcode as a module.

Definition

For an interval, [a, b), we define the **interval module**, $I^{[a,b)}$, to be the following for all i, x, y.

$$I_{i}^{[a,b)} = \begin{cases} \mathbb{R} & i \in [a,b) \\ 0 & \text{otherwise} \end{cases} \qquad I_{x,y}^{[a,b)} = \begin{cases} id & x \leq y \in [a,b) \\ 0 & \text{otherwise} \end{cases}.$$

The collection of interval modules is a persistence module. [Bot]

Theoretical Diversion: We can view the barcode as a module.

Definition

For an interval, [a, b), we define the **interval module**, $I^{[a,b)}$, to be the following for all i, x, y.

$$I_i^{[a,b)} = \begin{cases} \mathbb{R} & i \in [a,b) \\ 0 & \text{otherwise} \end{cases} \qquad I_{x,y}^{[a,b)} = \begin{cases} id & x \leq y \in [a,b) \\ 0 & \text{otherwise} \end{cases}.$$

The collection of interval modules is a persistence module. [Bot]

Intuitively, we are assigning $\mathbb R$ to each index in the interval. Maps are induced between each copy of $\mathbb R$.

$Algebra \rightarrow Summary$

Theoretical Diversion: We can view the barcode as a module.

Definition

For an interval, [a, b), we define the **interval module**, $I^{[a,b)}$, to be the following for all i, x, y.

$$I_i^{[a,b)} = \begin{cases} \mathbb{R} & i \in [a,b) \\ 0 & \text{otherwise} \end{cases}$$
 $I_{x,y}^{[a,b)} = \begin{cases} id & x \leq y \in [a,b) \\ 0 & \text{otherwise} \end{cases}$.

The collection of interval modules is a persistence module. [Bot]

Intuitively, we are assigning $\mathbb R$ to each index in the interval. Maps are induced between each copy of \mathbb{R} .

For example, in the discrete case,

Elise Askelsen

Theoretical Diversion: We can view the barcode as a module.

We use the collection of interval modules to define the direct sum, $\bigoplus_{[a,b)\in B(P)}I^{[a,b)}$ where B(P) is the barcode of P.

Theorem

For V , an [n]-module such that $\text{dim}V_p<\infty$ for all $p\in[n].$ Then

$$V \cong \bigoplus_{[a,b)\in B(V)} I^{[a,b)}$$

where B(V) is the barcode of V.

Summary \rightarrow Analysis

This step often depends on the data we are studying and what features within our data we want to consider.

Much study revolves around applications and *stability*, a measure of how similar our results are if we perturb our data slightly.

Summary \rightarrow Analysis

Stability:

- Requires defining a metric on modules or the barcode modules.
- Sparks the question of what is the best metric

$\mathsf{Summary} \to \mathsf{Analysis}$

Applications: Audio Detection:

Goal: Use topological descriptors of audio signals for audio identification.

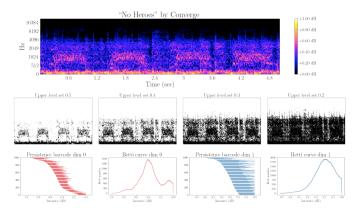


Figure: Song 'No Heroes' from the metal core band *Converge*, with a strong heavy metal rhythm [RFD⁺23]

Summary → Analysis

Applications: Audio Detection:

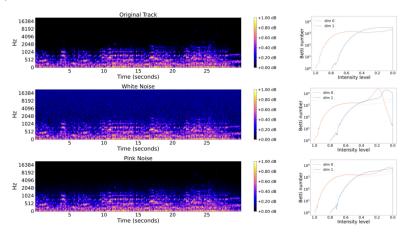


Figure: Data gathered from 'The Morning' by Le Loup. [RFD+23]

Summary → Analysis

Applications: Audio Detection:

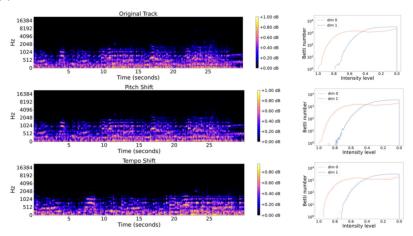


Figure: Data gathered from 'The Morning' by Le Loup. [RFD+23]

Future Directions

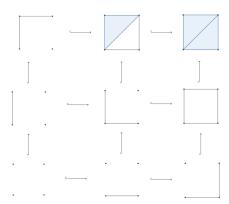
As more complicated data is analyzed, we need to consider multiple parameters.

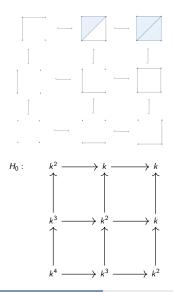
We call this type of TDA, MultiParameter Persistent Homology. For n parameters, we can build an n-filtered simplicial complex.

Future Directions

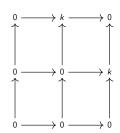
As more complicated data is analyzed, we need to consider multiple parameters.

We call this type of TDA, MultiParameter Persistent Homology. For n parameters, we can build an n-filtered simplicial complex.





Applying homology at each index in the multiparameter case, we get the following;



 H_1 :

Future Directions

- Further study of MultiParameter Persistent Homology.
 - No "good" barcode exists in this case with the current generalized definition.
 - Is there another way to summarize the data?
- Work on finding a good measure of stability.
- Continue to develop efficient code for producing results and visualization of data analyzed with TDA.

How do you get started?

For those interested in the theoretical side:

Topological Data Analysis Mastermath by Dr. Magnus Bakke Botnan

For those interested in the computational side:

- TDA package in RStudio
- giotto-tda

For those interested in both:

1 Dr. Peter Bubenik's webpage

Are there any questions?

Thank you!

Thank you!

Go Dutch!

References:

Topological data analysis mastermath.

Course Notes 2022.

https://www.few.vu.nl/~botnan/lecture_notes.pdf.

Wojciech Reise, Ximena Fernández, Maria Dominguez, Heather A. Harrington, and Mariano Beguerisse-Díaz.

Topological fingerprints for audio identification, 2023.

Summary \rightarrow Analysis

Stability:

In many cases, this requires defining a metric on modules or the barcode modules.

There are many examples of metrics including:

- The Bottleneck Distance: $d_{\mathcal{B}}(\mathcal{C}, \mathcal{D}) = \inf\{c(\chi)|\chi \text{ is a matching between } \mathcal{C} \text{ and } \mathcal{D}\}.$
- The Interleaving Distance: $d_T(M, N) = \inf\{\epsilon | \epsilon \text{-interleaving between } M \text{ and } N \}.$

Goal: Find a way to summarize multidimensional data as we did in one dimension with the barcode.

Goal: Find a way to summarize multidimensional data as we did in one dimension with the barcode.

Definition

A **good barcode** for an \mathbb{N}^2 -indexed bipersistence module M is a collection \mathcal{B}_M of subsets of \mathbb{R}^2 such that for each $a \leq b \in \mathbb{R}^2$,

$$\operatorname{Rank} M_{a,b} = |\{S \in \mathcal{B}_M | a, b \in S\}|.$$

Goal: Find a way to summarize multidimensional data as we did in one dimension with the barcode.

Definition

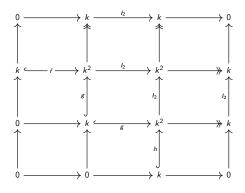
A **good barcode** for an \mathbb{N}^2 -indexed bipersistence module M is a collection \mathcal{B}_M of subsets of \mathbb{R}^2 such that for each $a \leq b \in \mathbb{R}^2$,

$$\operatorname{Rank} M_{a,b} = |\{S \in \mathcal{B}_M | a, b \in S\}|.$$

The one parameter case satisfies this definition.

Claim:

Consider the \mathbb{N}^2 -indexed persistence module



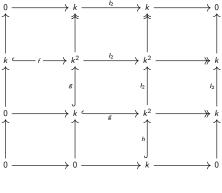
$$f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$g = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $g = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $h = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Claim:

Consider the \mathbb{N}^2 -indexed persistence module



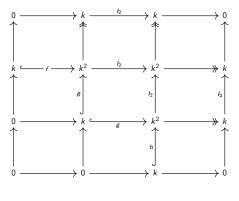
$$f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $g = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $h = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Let a=(0,0) and b=(2,2). Then if $S\subseteq\mathbb{R}^2$ is a region with $a,b\in S$,

$$|\{S \in \mathcal{B}_M | a, b \in S\}| = 3.$$

Claim:

Consider the \mathbb{N}^2 -indexed persistence module



$$f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $g = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$h = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

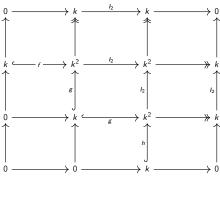
Let a = (0,0) and b = (2,2). Then if $S \subseteq \mathbb{R}^2$ is a region with $a, b \in S$,

$$|\{S \in \mathcal{B}_M | a, b \in S\}| = 3.$$

However, $\operatorname{Rank} M_a$, b = 0which shows no such barcode exists for this persistence module.

Claim:

Consider the \mathbb{N}^2 -indexed persistence module



$$f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$g = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$h = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Let a = (0,0) and b = (2,2). Then if $S \subseteq \mathbb{R}^2$ is a region with $a, b \in S$.

$$|\{S\in\mathcal{B}_M|a,b\in S\}|=3.$$

However, $\operatorname{Rank} M_a$, b=0 which shows no such barcode exists for this persistence module.

No good barcode exists for n-parameter persistence modules of any indexing set for n > 2.